返回列表 发新帖
楼主: 赵北旅 - 

望远镜中级扫盲贴

  [复制链接]
发表于 2019-1-18 18:05  | 显示全部楼层
sumuzhe 发表于 2019-1-18 17:28
“没见过” “不知道” 不等于 没有 不存在。。。

那你发几个出来我学习学习。
回复 支持 反对

使用道具 举报

发表于 2019-1-18 18:16  | 显示全部楼层
赵北旅 发表于 2019-1-18 18:05
那你发几个出来我学习学习。

先了解一下你什么学历?
回复 支持 反对

使用道具 举报

发表于 2019-1-18 18:43  | 显示全部楼层
本帖最后由 赵北旅 于 2019-1-18 18:45 编辑
sumuzhe 发表于 2019-1-18 18:16
先了解一下你什么学历?

我幼儿园大班学历。
然后你就不发了?因为我看不懂?看来你起码是个教授咯?
不过放心,这里有的是硕士博士,你能发就有人能看。

回复 支持 反对

使用道具 举报

发表于 2019-1-18 20:30  | 显示全部楼层
学习了,感觉这个可以算高级扫盲贴。
回复 支持 反对

使用道具 举报

发表于 2019-1-18 20:40  | 显示全部楼层
sumuzhe 发表于 2018-9-22 14:39
请搜索锐度关键词  中文 调制传递函数  英文 Modulation Transfer Function  
通透  关键词 传统理论下  ...

你说的第一个公式,实际上是说望远镜的锐度是由衍射极限确定。但是实际上主要是加工精度,,像差等。这才是现实中影响望远镜锐度的。
你说的第二个公式,通俗点讲也就表达了,光线不是被吸收了,不是被反射了,都透过去了。实际上也没什么用。我就随便说一个,即使两个透光率相同的望远镜,一个消光做的好,一个消光做得不好,里面杂光反射的很多,影响了对比度,也会给人感觉不通透。
回复 支持 反对

使用道具 举报

发表于 2019-1-19 12:20  | 显示全部楼层
zbr1016 发表于 2019-1-18 20:40
你说的第一个公式,实际上是说望远镜的锐度是由衍射极限确定。但是实际上主要是加工精度,,像差等。这才 ...

MTF不是分辨率,也不是衍射极限,MTF包含了分辨率,它是更高一个维度的数据。但是这个数据很难测,即便是镜头厂家,很多公布的也是理论值而已。
回复 支持 反对

使用道具 举报

发表于 2019-1-19 12:32  | 显示全部楼层
zbr1016 发表于 2019-1-18 20:40
你说的第一个公式,实际上是说望远镜的锐度是由衍射极限确定。但是实际上主要是加工精度,,像差等。这才 ...

MTF不是分辨率,也不是衍射极限,MTF包含了分辨率,它是更高一个维度的数据。但是这个数据很难测,即便是镜头厂家,很多公布的也是理论值而已。
回复 支持 反对

使用道具 举报

发表于 2019-1-19 13:04  | 显示全部楼层
funder 发表于 2019-1-19 12:32
MTF不是分辨率,也不是衍射极限,MTF包含了分辨率,它是更高一个维度的数据。但是这个数据很难测,即便是 ...

别别别,我还等着苏教授放几个望远镜的mtf图呢,你也是教授,等会你们两个可以交流交流,我这种幼儿园毕业的就在旁边看看得了。
回复 支持 反对

使用道具 举报

发表于 2019-1-19 17:40  | 显示全部楼层
funder 发表于 2019-1-19 12:32
MTF不是分辨率,也不是衍射极限,MTF包含了分辨率,它是更高一个维度的数据。但是这个数据很难测,即便是 ...

看着那个英文名字,我随便想象了一下,以为考虑到光的波动性。所以我觉得是考虑衍射极限。
刚才随便百度了一下,结果就百度到了mtf。我本来以为很高深的,百度不到就没去试。看了一下这个概念也挺好理解的,一个毫米能展示多少个线对,那确实是一个不错的衡量指标。
回复 支持 反对

使用道具 举报

发表于 2019-1-19 17:43  | 显示全部楼层
zbr1016 发表于 2019-1-19 17:40
看着那个英文名字,我随便想象了一下,以为考虑到光的波动性。所以我觉得是考虑衍射极限。
刚才随便百度 ...

MTF是烂大街的指标。。。
回复 支持 反对

使用道具 举报

发表于 2019-1-19 18:41  | 显示全部楼层
收藏慢慢体会,向老师致敬1
回复 支持 反对

使用道具 举报

发表于 2019-1-19 18:59  | 显示全部楼层
zbr1016 发表于 2019-1-19 17:40
看着那个英文名字,我随便想象了一下,以为考虑到光的波动性。所以我觉得是考虑衍射极限。
刚才随便百度 ...

你说的不太全面。从信号传递的角度来看,任何光学仪器都是有损的,和任何光学仪器不能放大亮度一样,任何光学仪器也不能放大反差。所以反差的传递系数一定是小于1的。但是究竟是0.5,0.6还是0.8,这个不仅和光学仪器自己的本领有关,也和信号本身的空间频率有关(线对是一种度量方式,可以拉平不同焦段的差异)。频率越高,则反差传递系数越低。要知道反差实际也是分辨率,因为到不能分辨的高频率细节,其实另一种说法就是反差低到一定程度了。
回复 支持 反对

使用道具 举报

发表于 2019-1-20 22:26  | 显示全部楼层
关于MTF,看下面这段:
Factors affecting resolution
In the previous paragraph 7 the theoretical resolution limits of our eyes and binoculars
and telescopes are discussed. However, real life does not proceed via theoretical
limits when using binoculars and telescopes.
The visual resolution is reduced if the observed object has inherently low contrast,
as is the case for most natural objects. Reductions in contrast also occur because
of lightning irregularities, atmospheric effects, diffraction, aberrations in the eye,
focus errors, and effects of misalignments and aberrations in any optical system
employed.
So, the visual resolution using binoculars and telescopes is affected by different
factors, since the image of the natural objects is far more complex than an image
of a point source. The image consists of a multitude of details having different size,
shape, color, brightness, and contrast –a virtually infinite number of bright and less
bright point sources. Each of these contributes a diffraction pattern to the focal
plane, so the final image is the composite of the overlapping diffraction patterns.
In the case of a bright surface and an adjacent dark surface, diffracted light encroaches
into the dark border, causing blurring and unsharpness of the borderline.
A thin dark line on a dark background is “greyed”, while a bright line on a dark
background is widened. These effects are visible particularly when these lines have
an angular width comparable with or smaller than the diffraction pattern. Depending
on the shape, size, brightness, contrast and color of the object observed, the
influence of diffraction on the final image will be different. In that case it is difficult to
find a representative and reproducible method to define the resolution of an optical
system for this kind of image. It was the concept of contrast transfer for optical
systems developed in 1946 by P.M. Duffieux, which yielded considerable insight
into what happens in the image forming process. For details to be visible they
must have sufficient contrast. If the image contrast lies below the eye’s visibility
Figure 42
Intensity profiles across images
formed by the human eye at
different pupil sizes. When the
pupil is constricted in bright light
(pupil size 1,5 mm), the theoretical
diffraction profile (grayed-in
shape) nearly matches the actual
performance profile (area under
thck line) of the eye. At lower
light levels, the eye’s aberrations
increasingly dominate its imaging
capability.
28
threshold, then the detail will be invisible. Image contrast depends not only on the
inherent contrast in the object, but also on how much contrast the optical system
transfers from the object to the image plane. Contrast transfer is the key for understanding
why a certain object detail may be visible in one binocular, but not in
another of the same aperture.
Resolving power and contrast transfer are both quality criteria for every binocular
and telescope. Today it is possible to measure the contrast transfer of an optical
system with special equipment and the relation between image contrast and resolution
can be determined for every point in the image plane with so-called Contrast
Transfer Functions (CTF), the Modulation Transfer Function (MTF) or the Optical
Transfer Function (OTF).
In principle, contrast transfer is measured by placing a grating having a sinusoidal
intensity distribution as an object in front of the optical system, then measuring the
contrast of the resultant image. The ratio between image contrast and object contrast
is called the Contrast Transfer coefficient CT. Each combination of a bright line
and a darker line is called a line pair (lp). A coarse target has a small number of line
pairs per millimeter in the target grating, while a fine target has a high count of line
pairs per millimeter (lp/mm). To evaluate an optical system, we vary the spacing of
line pairs in the grating, and measure the contrast in the image. As the number of
line pairs increases, the optical system renders then with lower and lower contrast
because every point in the object is represented by a diffraction pattern in the
image.
This diffraction pattern scatters light around every image point so that the dark
places in the image are illuminated by diffracted light. This effect becomes more
important as the distance between elements in the image approaches the size
of the diffraction pattern. At some value the image contrast is reduced to zero.
The image of the grating will then be uniformly bright and without any structure.
This is the highest resolving power the system can attain. Duffieux found that the
contrast function for a perfect system is a smoothly decreasing monotonic curve.
CTF curves are extremely useful because we can compare the performance of an
imperfect optical system with the curve for a perfect system. Since the CTF of real
systems is the accumulation of both diffraction effects and various aberrations, we
gain information about the magnitude of image aberrations. The curves for imperfect
systems generally lie below the ideal CTF curve. This means that for the same
resolution, the image contrast of the imperfect system is lower than that of a perfect
system. Image aberrations usually lower the CTF curve more at large numbers
of line pairs per millimeter than at low numbers because the diffraction rings are
brightened at the cost of the Airy disks.
The CTF curve gives a better overall picture of the binoculars’ or telescope’s optical
quality, and certainly yields far more information than testing on double stars possibly
can. It takes into account not only the accumulation of diffraction effects but
also the imperfections in the optical system, not only errors of fabrication but also
of design. The net capability of the binocular or telescope finds its expression in the
position of the contrast transfer curve with respect to the idealized curve. For visual
observation of low contrast details on objects it is difficult to define a meaningful
resolving power for a binocular or telescope. Parameters such as brightness of the
image, intrinsic contrast, image aberrations, and magnification as well as the contrast
sensitivity and visual acuity of the eye must be taken into account. Because of
this, any definition of resolving power is always subject to strict conditions.
29
Because the resolving power for high contrast objects is not sensitive to optical
errors, it is obvious that the common practice of testing telescopes and binoculars
with charts consisting black and white bars is a poor test of optical quality. Conclusions
drawn on the basis of such charts do little to predict the performance of
a binocular or telescope on objects with a low intrinsic contrast. Test charts with
dark grey and light gray lines are more suitable for testing the performance of
these instruments. The Paterson Optical Test Target designed by Geoffrey Crawly,
editor of the British Journal of Photography, may then be an appropriate choice for
resolution tests. It consists of 63 segments (each with structural details of different
shape and ranging from course to very fine) in checkerboard fashion in black, grey
and three colors.
Rutten and Van Venrooij published estimates of the loss of resolving power at different
contrast levels and they came up with the values listed in their table below:
Apart from the above described limitations for determining the resolution of an optical
system one has also to take into account the circumstances that influence the
acuity of the eye and the observation process.
The eye’s resolution at full daylight amounts to approximately 1 minute of arc, but
it decreases with increasing age. The resolution decline starts already from the
age of 20 and at the age of 60 it is diminished by about 25%. That means that a 60
year old eye may have a visual resolution of around 75 arcseconds. The resolution
is also diminished when binoculars are used handheld. Handheld binoculars with
8x magnification may perform 20-30% less due to muscular tremble or shake than
supported binoculars and this difference grows with increasing magnification. This
muscular tremble does affect the visual resolution.
回复 支持 反对

使用道具 举报

发表于 2019-2-10 13:34  | 显示全部楼层
不是扫盲贴啊……专业、专业……是专业贴啊……    受教了……
回复 支持 反对

使用道具 举报

发表于 2019-2-10 13:42  | 显示全部楼层
pcsms_PAI0UxE0 发表于 2019-2-10 13:34
不是扫盲贴啊……专业、专业……是专业贴啊……    受教了……

这就是一个扫盲贴,没有讲到任何专业的内容,都是白话。
觉得专业是因为国内大部分人,包括那些所谓大神,实际都是镜盲。
回复 支持 反对

使用道具 举报

发表于 2019-2-10 13:54  | 显示全部楼层
赵北旅 发表于 2019-2-10 13:42
这就是一个扫盲贴,没有讲到任何专业的内容,都是白话。
觉得专业是因为国内大部分人,包括那些所谓大神 ...

受教……看来是“镜海无边”、吾等是“精卫填海”啊……
回复 支持 反对

使用道具 举报

发表于 2019-2-10 13:56  | 显示全部楼层
pcsms_PAI0UxE0 发表于 2019-2-10 13:54
受教……看来是“镜海无边”、吾等是“精卫填海”啊……

我是初涉北旅之门,请大神多多指教……
回复 支持 反对

使用道具 举报

发表于 2019-2-10 13:57  | 显示全部楼层
pcsms_PAI0UxE0 发表于 2019-2-10 13:54
受教……看来是“镜海无边”、吾等是“精卫填海”啊……

都是基础知识,没有什么难的东西,只是国内起步晚国人又浮躁。
回复 支持 反对

使用道具 举报

发表于 2019-2-13 22:59  来自手机  | 显示全部楼层
感谢科普!学习了
回复 支持 反对

使用道具 举报

发表于 2019-2-13 23:23  | 显示全部楼层
SoulerXu 发表于 2018-9-2 13:03
非常感谢赵兄的科普贴!
帖子里提到的Leica 25x - 50x WW ASPH变倍目镜我拆开擦洗过,详见此贴:http://ww ...

这破玩意别玩儿了、忒累了。
回复 支持 反对

使用道具 举报

发表回复

您需要登录后才可以回帖 登录 | 注 册

本版积分规则

关于我们
关于我们
友情链接
联系我们
帮助中心
网友中心
购买须知
支付方式
服务支持
资源下载
售后服务
定制流程
关注我们
官方微博
官方空间
官方微信
快速回复 返回顶部 返回列表